
INTRODUCTION

Introduction to Emulsions
An emulsion is a biphasic system consisting of at
least two immiscible liquids, one of which is an
internal or dispersed phase (dispersed as globules)
within the external or continuous phase (other liquid
phase), generally stabilized by an emulsifying agent
[1,2]. Emulsions have been widely used in many
areas including petroleum [3], agriculture [4,5] food
[6-12], pharmaceuticals [13-21] and cosmetics. [14-
16,22-24] Mostly, emulsions are used in cosmetics
products as topical agents for dermal application
since they are highly appreciated among consumers.

Preparation of Emulsions and Techniques of
Emulsification
The preparation techniques of emulsion formulations
can be divided into laboratory-scale productions and
large-scale productions. Each method requires the
introduction of energy into the system by trituration,
homogenization, agitation, or heat. For stable
emulsions, appropriate preparation and formulation
techniques are required. Following physical and
chemical properties before the preparation of an
emulsion are considered [25].

i. Structure formula.
ii. Melting point.
iii. Solubility in different media.
iv. Stability.
v. Dose.
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ABSTRACT

An emulsion is a dispersed system consisting of at least two immiscible liquids, one of which is an
internal or dispersed phase (dispersed as globules) within the external or continuous phase (other
liquid phase), generally stabilized by an emulsifying agent. Emulsions have been widely used in many
areas including petroleum, agriculture, food, pharmaceuticals and cosmetics, however, consumers
highly appreciate emulsions for dermal application. Emulsions can be classified on the basis of their
type or droplet size. The physical stability can be evaluated by two accelerated aging methods discussed
i.e. storage of emulsions at different temperatures and measurement of creaming process by
centrifugation. A stable emulsion is one in which there is a uniform distribution of the dispersed
globules throughout the continuous phase. Major types of physical instabilities are discussed in this
review including flocculation, creaming, coalescence and breaking and this review will concentrate
on methods of improving emulsion stability in practice.
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vi. Specif ic  chemical  incompat ibi l i t ies .
vii. Selection of an appropriate emulsifying agent
and its concentration.

The emulsification techniques of pharmaceutical
products have been reviewed by Block [26] Freitas
et al.[27] Schramm [28] and mainly four
emulsification methods have been discussed:

i. The emulsion system is subjected to shear or
fracture at the time of addition of the internal phase.

ii. The addition of external phase into the internal
phase, this is known as phase inversion technique.
In an oil-in-water emulsion system the aqueous phase
is added into the oil phase, at first a water-in-oil
emulsion is formed which on further addition of
water results in the inversion of the phase and hence
forms an oil-in-water emulsion.

iii. Separate heating of both phases and then mixing
them together. This method is frequently used for
the preparation of creams.

iv. In small portions, alternate addition of the two
phases to the emulsifying agent, which is suitable
for food emulsion preparation.

Classification of Emulsions
Emulsions can be classified on the basis of their type
or droplet size. Based on their type, they are divided
into two groups i.e. simple emulsions and multiple
emulsions.

Simple Emulsions
The simple emulsions may further be divided into
either oil-in-water (o/w) or water-in-oil (w/o),
depending upon the nature of the continuous phase.
In topical w/o preparations, a greasy texture is
experienced as it exhibits a higher apparent viscosity
then o/w emulsions. On the contrary, o/w emulsions
exert a less greasy or sticky texture on application
to the skin. They are usually quickly absorbed and
are easily washed off from the skin surface due to
low oil content [28].

Multiple Emulsions
Multiple emulsions constitute a more sophisticated
system. The simplest ones are oil-in-water-in-oil
(o/w/o) or water-in-oil-in-water (w/o/w) double
emulsions. In the latter, for example, the emulsion
is composed of aqueous droplets, which are dispersed
inside oily drops, these oily drops are further dispersed
in an external aqueous phase [29]. Complex multiple
emulsions may contain several phases such as
o/w/o/w, w/o/o, o/w/o/o, etc. depending on their use
[25,28].

Emulsions can also be classified according to their
droplet size into three categories: macroemulsions,
microemulsions, and nanoemulsions.

Macroemulsions
Extensive and careful studies have been carried out
on macroemulsions and several excellent books have
been written on various aspects of formulation and
stability of these systems. Macroemulsions are the
emulsion systems with droplet sizes ranging from
0.1 to 100 µ. These sizes allow light scattering and
thus gives white color to the emulsions [28].

Microemulsions
The term microemulsion was first introduced by
Schulman et al [30]. Their droplet size varies from
100 Å to 100 nm [31]. Microemulsions generally
contain both a surfactant and co-surfactant that induce
spontaneous formation of the system. Microemulsions
are often transparent to the eye with low viscosity
and are thermodynamically stable [32]. This stability
is due to their very low interfacial tension (enthalpy),
typically [10-1 to 10-2] mN/m 33, and small droplet
size (entropy) [31,34].

Nanoemulsions
Nanoemulsions refer to the emulsions with the droplet
sizes in the nanometric scale, i.e. with a mean diameter
of 20–200 nm. The relatively small size of these
droplets with respect to the optical wavelengths of
the visible spectrum implies that many nanoemulsions
appear optically transparent, even at large droplet
volume fraction and for large refractive index contrast
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[35,36]. However, nanoemulsions may become
slightly turbid if the droplet diameter approaches 80
nm [37,38]. Above this size, still in the submicron
range, they appear white due to significant multiple
scattering. In comparison to microemulsions,
nanoemulsions are not thermodynamically stable
[34].

Emulsion Stability Assessment
Stability of an emulsion is a combination of physical
(no phase separation), chemical (no chemical reaction)
and microbiological stability (no microbial growth
or spoilage). The physical stability can be evaluated
by two accelerated aging methods, which mimic
conditions that emulsions could undergo during
transport and storage. The first method evaluates the
samples stored at different temperatures (e.g. from
0 to 40°C) and for varying time periods (e.g. from
24 h to 15 days). It may also include repeated hot–cold
cycles. The second method is based on the
centrifugation of emulsions and measurements of the
sedimentation or creaming processes that can lead
to coalescence [39]. Accelerated aging studies by
centrifugation allow the determination of the emulsion
stability index (ESI), or most commonly referred as
creaming index (CI), by the following formula:
[40,41].
CI (%) = HC × 100

HE

Where HC is the height of cream or aqueous layer in
the container and HE is the initial or total height of
emulsion in the container. Creaming is a natural
phenomenon in biphasic systems and is an indication
of destabilization. The higher the CI, lesser will be
the stability of emulsion [40,41]. This method may
sometimes pose problems in visual observation such
as in distinguishing or identifying the boundary
between the two phases.

Alternatively, the emulsion stability can be evaluated
by using an instrumental technique known as
TurbiscanTM (Formulaction, L’Union, France). It is
composed of a near infrared light source (   = 850
nm) and two synchronous detectors that scan the

entire length of an emulsion filled tube. Diffuse
reflectance and transmittance versus sample height
and time are obtained, allowing detection of
flocculation and coalescence processes even at an
early stage that is not visible to the eye, i.e. up to 50
times quicker than naked eye [34].

Types of Instability
A stable emulsion is one in which there is a uniform
distribution of the dispersed globules throughout the
continuous phase. Major types of physical instabilities
(Fig. 1) include flocculation, creaming, coalescence
and breaking [42-44] which are discussed as follows:

Flocculation
Loose clusters formed due to the aggregation of
dispersed phase globules are called floccules and the
phenomenon is termed as flocculation (Fig. 1). It
causes an increase in the rate of creaming and is said
to be a precursor of coalescence. However, in
flocculation the interfacial film and individual droplets
remains linked together [25,28].

Prevention of flocculation
On shaking, the emulsion is easily redispersed. High
charge density of the dispersed droplets will cause
the presence of high energy barrier and reduce the
incidence of flocculation. Effects of any ions in the
formulation must be considered early in the
formulation process, particularly in emulsions for
parenteral nutrition containing high levels of
electrolytes [45,46].

Creaming
Separation of an emulsion into two layers, one of
which is richer in the disperse phase than the other
is called creaming (Fig. 1). Creaming causes
inelegancy to the emulsion and if it is not shaken
adequately, the patient might obtain an incorrect
dosage [25].

Prevention of creaming
Reducing the droplet or globule size through efficient
emulsification may result in the stabilization of the
emulsion by avoiding creaming. An increase in the



viscosity of the system may also help in the
stabilization of the emulsion. Methylcellulose is
known to reduce the mobility of the dispersed phase
globules in an o/w emulsion. Similarly, addition of
soft paraffin in w/o emulsion will produce the same
effect on water droplets. Storage temperature also
influences the creaming of the product as at low
temperature the viscosity of continuous phase
increases which decreases the kinetic energy of the
system. Another approach used for decreasing the
creaming phenomenon in emulsions is by making
the densities of the two phases identical or by
increasing the dispersed phase concentration that
would result in a movement of dispersed phase
globules and thus decreasing the rate of creaming
[25,45].

Coalescence
Coalescence (Fig. 1) takes place when the mechanical
and/or electrical barrier is not efficient to prevent the
large droplets to aggregate and finally leads to
complete phase separation (breaking)of the emulsion
formulation [44].

Prevention of coalescence
Coalescence might be delayed by the formation of
thick interfacial films, made up of macromolecules
or particulate solids. Long cohesive hydrocarbon
chains projecting into the oil phase will prevent

coalescence in a w/o emulsion [45].

Phase Separation (Breaking)
Phase separation or breaking may or may not be
observed visually. Generally creaming, coalescence
and flocculation occur before the phase separation
and thus makes its visibility and quantitative analysis
difficult to evaluate (Fig. 1). Centrifugation of the
samples or determination of creaming index helps in
the quantitative determination of this process [25].
Details on the creaming and phase separation
mechanisms including some advance techniques of
monitoring have been discussed by Robins [47].

Prevention of breaking
Breaking of an emulsion can be avoided by controlling
the factors responsible for other forms of instability
such as flocculation, creaming and coalescence.

Instability in emulsions can also be controlled by a
number of other factors such as proper selection of
formulations ingredients, their appropriate quantity,
optimum hydrophilic-lipophilic balance (HLB),
appropriate storage conditions, etc. All these factors
have been reviewed by Rieger [48]. Another approach
employed for the stabilization of emulsions includes
the use of biopolymers [34]. They can act as emulsifier
because of their ability to adsorb at the oil-water
interface and increase emulsion stability [1,49]. Most
polysaccharide polymers behave as emulsion
stabilizers by forming an extended network in the
continuous phase which thus becomes highly viscous
[50] and can even form a gel [51,52]. Such polymers
can form complexes through covalent bonding or
attractive electrostatic interactions [34,53,54].

CONCLUSION
The texture or feel of a product intended for external
use must also be considered and this fact is often
used to convey a feeling of richness to many cosmetic
formulations. Ideally emulsions should exhibit the
rheological properties of plasticity/pseudoplasticity
and thixotropy. A high apparent viscosity at the very
low rates with the shear movement of dispersed
globules is necessary for a stable emulsion. Addition
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Figure 1: Types of Instability in Emulsions



of polymers in the emulsion under appropriate
conditions such as concentration, protein-to-
polysaccharide ratio, pH, ionic strength, and
temperature etc, may be a valuable strategy for
improving its stability. A wide range of emulsion
consistencies can be tolerated for an externally applied
product.
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